Discrete Normalization and Standardization in Deterministic Residual Structures

نویسندگان

  • Zurab Khasidashvili
  • John R. W. Glauert
چکیده

? Abstract. We prove a version of the Standardization Theorem and the Discrete Normalization (DN) Theorem in stable Deterministic Residual Structures , which are Abstract Reduction Systems with axiomatized residual relation , and model orthogonal rewrite systems. The latter theorem gives a strategy for construction of reductions L evy-equivalent (or permutation-equivalent) to a given, nite or innnite, regular (or semi-linear) reduction, based on the neededness concept of Huet and L evy. This and other results of this paper add to the understanding of L evy-equivalence of reductions, and consequently , L evy's reduction space. We demonstrate how elements of this space can be used to give denotational semantics to known functional languages in an abstract manner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative Normalization in Deterministic Residual Structures

? Abstract. This paper generalizes the Huet and L evy theory of normaliza-tion by neededness to an abstract setting. We deene Stable Deterministic Residual Structures (SDRS) and Deterministic Family Structures (DFS) by axiomatizing some properties of the residual relation and the family relation on redexes in an Abstract Rewriting System. We present two proofs of the Relative Normalization Theo...

متن کامل

A Hybrid Particle Swarm Optimization and Genetic Algorithm for Truss Structures with Discrete Variables

A new hybrid algorithm of Particle Swarm Optimization and Genetic Algorithm (PSOGA) is presented to get the optimum design of truss structures with discrete design variables. The objective function chosen in this paper is the total weight of the truss structure, which depends on upper and lower bounds in the form of stress and displacement limits. The Particle Swarm Optimization basically model...

متن کامل

Using a new modified harmony search algorithm to solve multi-objective reactive power dispatch in deterministic and stochastic models

The optimal reactive power dispatch (ORPD) is a very important problem aspect of power system planning and is a highly nonlinear, non-convex optimization problem because consist of both continuous and discrete control variables. Since the power system has inherent uncertainty, hereby, this paper presents both of the deterministic and stochastic models for ORPD problem in multi objective and sin...

متن کامل

Continuous Discrete Variable Optimization of Structures Using Approximation Methods

Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...

متن کامل

Strong normalization property for second order linear logic

The paper contains the first complete proof of strong normalization (SN) for full second order linear logic (LL): Girard’s original proof uses a standardization theorem which is not proven. We introduce sliced pure structures (sps), a very general version of Girard’s proof-nets, and we apply to sps Gandy’s method to infer SN from weak normalization (WN). We prove a standardization theorem for s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996